Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus)
Autor: | Frederica Di Palma, Bo-Young Lee, Helena D'Cotta, Catherine Ozouf-Costaz, Aimee E. Howe, Kerstin Lindblad-Toh, Matthew A. Conte, Andrew Stuart, Julie Poulain, Thomas D. Kocher, Jeremy Johnson, Lucile Soler, Carole Dossat, Takayuki Katagiri, Jean-François Baroiller, Chris T. Amemiya |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Chromosomes
Artificial Bacterial Évolution Genome Nile tilapia Gene Order Marqueur génétique Conserved Sequence Genetics Expressed sequence tag biology Oreochromis niloticus Tilapia Cichlids Physical Chromosome Mapping Smegmamorpha Oreochromis Research Article Biotechnology Fish Proteins food.ingredient Séquence nucléotidique Positional cloning lcsh:QH426-470 Fish farming lcsh:Biotechnology Molecular Sequence Data génomique food Cichlid lcsh:TP248.13-248.65 Animals Gene Library Génome L60 - Taxonomie et géographie animales Microsatellite Sequence Analysis DNA biology.organism_classification L10 - Génétique et amélioration des animaux lcsh:Genetics Carte génétique M12 - Production de l'aquaculture human activities Microsatellite Repeats |
Zdroj: | BMC Genomics BMC Genomics, Vol 11, Iss 1, p 636 (2010) |
Popis: | Background The Nile tilapia is the second most important fish in aquaculture. It is an excellent laboratory model, and is closely related to the African lake cichlids famous for their rapid rates of speciation. A suite of genomic resources has been developed for this species, including genetic maps and ESTs. Here we analyze BAC end-sequences to develop comparative physical maps, and estimate the number of genome rearrangements, between tilapia and other model fish species. Results We obtained sequence from one or both ends of 106,259 tilapia BACs. BLAST analysis against the genome assemblies of stickleback, medaka and pufferfish allowed identification of homologies for approximately 25,000 BACs for each species. We calculate that rearrangement breakpoints between tilapia and these species occur about every 3 Mb across the genome. Analysis of 35,000 clones previously assembled into contigs by restriction fingerprints allowed identification of longer-range syntenies. Conclusions Our data suggest that chromosomal evolution in recent teleosts is dominated by alternate loss of gene duplicates, and by intra-chromosomal rearrangements (~one per million years). These physical maps are a useful resource for comparative positional cloning of traits in cichlid fishes. The paired BAC end sequences from these clones will be an important resource for scaffolding forthcoming shotgun sequence assemblies of the tilapia genome. |
Databáze: | OpenAIRE |
Externí odkaz: |