Positive Scalar Curvature due to the Cokernel of the Classifying Map

Autor: Vito Felice Zenobi, Thomas Schick
Rok vydání: 2020
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications.
ISSN: 1815-0659
DOI: 10.3842/sigma.2020.129
Popis: This paper contributes to the classification of positive scalar curvature metrics up to bordism and up to concordance. Let $M$ be a closed spin manifold of dimension $\ge 5$ which admits a metric with positive scalar curvature. We give lower bounds on the rank of the group of psc metrics over $M$ up to bordism in terms of the corank of the canonical map $KO_*(M)\to KO_*(B\pi_1(M))$, provided the rational analytic Novikov conjecture is true for $\pi_1(M)$.
Databáze: OpenAIRE