Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation
Autor: | Shaomei Fang, Jiazhuo Cheng |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pointwise convergence
Pointwise Algebra and Number Theory Partial differential equation 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs lcsh:QA299.6-433 lcsh:Analysis 01 natural sciences Blowing up 010101 applied mathematics Sobolev space Nonlinear system Green’s function method Ordinary differential equation Negative index Initial value problem Fractional semilinear pseudo-parabolic equation 0101 mathematics Analysis Mathematics |
Zdroj: | Boundary Value Problems, Vol 2020, Iss 1, Pp 1-16 (2020) |
ISSN: | 1687-2770 |
DOI: | 10.1186/s13661-020-01431-3 |
Popis: | This article concerns the Cauchy problem for the fractional semilinear pseudo-parabolic equation. Through the Green’s function method, we prove the pointwise convergence rate of the solution. Furthermore, using this precise pointwise structure, we introduce a Sobolev space condition with negative index on the initial data and give the nonlinear critical index for blowing up. |
Databáze: | OpenAIRE |
Externí odkaz: |