An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications
Autor: | Clint R. V. Otto, Deborah D. Iwanowicz, Jay D. Evans, Tuğçe Olgun, Autumn H. Smart, Dawn Lopez, Judy Wu-Smart, Robert S. Cornman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Pollinator lcsh:Medicine Biology 010603 evolutionary biology 01 natural sciences General Biochemistry Genetics and Molecular Biology law.invention 03 medical and health sciences law Halictus ligatus Complementary DNA Virology Genetics Clade Agricultural Science Polymerase chain reaction 030304 developmental biology 0303 health sciences Lake Sinai Virus Genetic heterogeneity General Neuroscience lcsh:R General Medicine Amplicon biology.organism_classification Metagenetics Genetic marker Evolutionary biology Primer (molecular biology) Apis mellifera General Agricultural and Biological Sciences Entomology |
Zdroj: | PeerJ PeerJ, Vol 8, p e9424 (2020) |
ISSN: | 2167-8359 |
Popis: | Background Lake Sinai Viruses (LSV) are common RNA viruses of honey bees (Apis mellifera) that frequently reach high abundance but are not linked to overt disease. LSVs are genetically heterogeneous and collectively widespread, but despite frequent detection in surveys, the ecological and geographic factors structuring their distribution in A. mellifera are not understood. Even less is known about their distribution in other species. Better understanding of LSV prevalence and ecology have been hampered by high sequence diversity within the LSV clade. Methods Here we report a new polymerase chain reaction (PCR) assay that is compatible with currently known lineages with minimal primer degeneracy, producing an expected 365 bp amplicon suitable for end-point PCR and metagenetic sequencing. Using the Illumina MiSeq platform, we performed pilot metagenetic assessments of three sample sets, each representing a distinct variable that might structure LSV diversity (geography, tissue, and species). Results The first sample set in our pilot assessment compared cDNA pools from managed A. mellifera hives in California (n = 8) and Maryland (n = 6) that had previously been evaluated for LSV2, confirming that the primers co-amplify divergent lineages in real-world samples. The second sample set included cDNA pools derived from different tissues (thorax vs. abdomen, n = 24 paired samples), collected from managed A. mellifera hives in North Dakota. End-point detection of LSV frequently differed between the two tissue types; LSV metagenetic composition was similar in one pair of sequenced samples but divergent in a second pair. Overall, LSV1 and intermediate lineages were common in these samples whereas variants clustering with LSV2 were rare. The third sample set included cDNA from individual pollinator specimens collected from diverse landscapes in the vicinity of Lincoln, Nebraska. We detected LSV in the bee Halictus ligatus (four of 63 specimens tested, 6.3%) at a similar rate as A. mellifera (nine of 115 specimens, 7.8%), but only one H. ligatus sequencing library yielded sufficient data for compositional analysis. Sequenced samples often contained multiple divergent LSV lineages, including individual specimens. While these studies were exploratory rather than statistically powerful tests of hypotheses, they illustrate the utility of high-throughput sequencing for understanding LSV transmission within and among species. |
Databáze: | OpenAIRE |
Externí odkaz: |