Integral representations of functions and Addison-type series for mathematical constants

Autor: Mark W. Coffey
Rok vydání: 2015
Předmět:
Zdroj: Journal of Number Theory. 157:79-98
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2015.04.005
Popis: We generalize techniques of Addison to a vastly larger context. We obtain integral representations in terms of the first periodic Bernoulli polynomial for a number of important special functions including the Lerch zeta, polylogarithm, Dirichlet $L$- and Clausen functions. These results then enable a variety of Addison-type series representations of functions. Moreover, we obtain integral and Addison-type series for a variety of mathematical constants.
36 pages, no figures
Databáze: OpenAIRE