Combinatorial Approach to Milnor Invariants of Welded Links
Autor: | Haruko A. Miyazawa, Akira Yasuhara, Kodai Wada |
---|---|
Rok vydání: | 2023 |
Předmět: |
Pure mathematics
Overline Mathematics::Complex Variables General Mathematics High Energy Physics::Phenomenology Geometric Topology (math.GT) Mathematics::Geometric Topology Mathematics - Geometric Topology Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology FOS: Mathematics Isotopy Link (knot theory) Mathematics |
Zdroj: | Michigan Mathematical Journal. 73 |
ISSN: | 0026-2285 |
DOI: | 10.1307/mmj/20205905 |
Popis: | For a classical link, Milnor defined a family of isotopy invariants, called Milnor $\overline{\mu}$-invariants. Recently, Chrisman extended Milnor $\overline{\mu}$-invariants to welded links by a topological approach. The aim of this paper is to show that Milnor $\overline{\mu}$-invariants can be extended to welded links by a combinatorial approach. The proof contains an alternative proof for the invariance of the original $\overline{\mu}$-invariants of classical links. Comment: 25 pages; v2: the title changed, Section 1 rewritten, remarks and references added; to appear in Michigan Mathematical Journal |
Databáze: | OpenAIRE |
Externí odkaz: |