Integrative mouse and human studies implicate ANGPT1 and ZBTB7C as susceptibility genes to ischemic injury
Autor: | Jun Xu, Robert M. Friedlander, Natalia S. Rost, Scott T. Weiss, Wenming Liu, Nareerat Charoenvimolphan, Jing Zhou, Annerose Berndt, Jian Wang, Beverly Paigen, Karen L. Furie, Jonathan Rosand, Baogang Qian, Svetlana Lorenzano, Xinmu Zhang, Xin Wang, Jinyi Wang, Valerie Valant, Rose Du, William J. Devan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Male
Pathology medicine.medical_specialty Mice 129 Strain Ischemia Genome-wide association study Polymorphism Single Nucleotide Article Brain Ischemia Brain ischemia models Mice Inbred strain Species Specificity brain ischemia cerebral infarction genetics animal stroke Mice Inbred NOD Genetic model Genetic variation medicine Angiopoietin-1 Animals Humans Genetic Predisposition to Disease Stroke Advanced and Specialized Nursing Mice Inbred BALB C Cerebral infarction business.industry Intracellular Signaling Peptides and Proteins Proteins medicine.disease Mice Inbred C57BL Mice Inbred DBA Female Neurology (clinical) Cardiology and Cardiovascular Medicine business Genome-Wide Association Study |
Popis: | Background and Purpose— The extent of ischemic injury in response to cerebral ischemia is known to be affected by native vasculature. However, the nonvascular and dynamic vascular responses and their genetic basis are not well understood. Methods— We performed a genome-wide association study in 235 mice from 33 inbred strains using the middle cerebral artery occlusion model. Population structure and genetic relatedness were accounted for using the efficient mixed-model association method. Human orthologs to the genes associated with the significant and suggestive single-nucleotide polymorphisms from the mouse strain survey were examined in patients with M1 occlusions admitted with signs and symptoms of acute ischemic stroke. Results— We identified 4 genome-wide significant and suggestive single-nucleotide polymorphisms to be associated with infarct volume in mice (rs3694965, P =2.17×10 –7 ; rs31924033, P =5.61×10 –6 ; rs32249495, P =2.08×10 –7 ; and rs3677406, P =9.56×10 –6 ). rs32249495, which corresponds to angiopoietin-1 ( ANGPT1 ), was also significant in the recessive model in humans, whereas rs1944577, which corresponds to ZBTB7C , was nominally significant in both the additive and dominant genetic models in humans. ZBTB7C was shown to be upregulated in endothelial cells using both in vitro and in vivo models of ischemia. Conclusions— Genetic variations of ANGPT1 and ZBTB7C are associated with increased infarct size in both mice and humans. ZBTB7C may modulate the ischemic response via neuronal apoptosis and dynamic collateralization and, in addition to ANGPT1 , may serve as potential novel targets for treatments of cerebral ischemia. |
Databáze: | OpenAIRE |
Externí odkaz: |