A Reduced-Basis Approach to Two-Phase Flow in Porous Media
Autor: | Guillaume Enchéry, Riad Sanchez, Sébastien Boyaval, Quang Huy Tran |
---|---|
Přispěvatelé: | IFP Energies nouvelles (IFPEN), Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics (Saint-Venant), École des Ponts ParisTech (ENPC)-Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), MATHematics for MatERIALS (MATHERIALS), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics (LHSV), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
Finite volume method Basis (linear algebra) Finite volumes 010102 general mathematics Parameterized complexity 010103 numerical & computational mathematics Reduced-basis 01 natural sciences Finite element method Two-phase flow Applied mathematics 0101 mathematics Porous medium Empirical interpolation A posteriori error estimate [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Parametric statistics Mathematics |
Zdroj: | FVCA 2017 FVCA 2017, Jun 2017, Lille, France. ⟨10.1007/978-3-319-57394-6_50⟩ Springer Proceedings in Mathematics & Statistics ISBN: 9783319573939 |
DOI: | 10.1007/978-3-319-57394-6_50⟩ |
Popis: | International audience; Reduced-basis methods (RB) have demonstrated their efficiency for a wide variety of problems, most of which are elliptic PDEs solved by finite element methods. In this work, we attempt to apply the RB philosophy to a simple “real-life” model for two-phase flows in porous media, whose reference scheme is a finite volume method. This model is parameterized by the viscosity of water. Because of the mixed parabolic-elliptic nature of the system, we first propose to restrict the RB approach to the pressure subsystem corresponding to the end time. The resulting parametric dependence is, however, much more intricate than in the classical examples. This difficulty will be discussed and illustrated by numerical results. |
Databáze: | OpenAIRE |
Externí odkaz: |