Inverse-designed growth-based cellular metamaterials

Autor: Sikko Van ’t Sant, Prakash Thakolkaran, Jonàs Martínez, Siddhant Kumar
Přispěvatelé: Delft University of Technology (TU Delft), Matter from Graphics (MFX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE10-0002,MuFFin,Microstructures procedurales et stochastiques pour la fabrication fonctionnelle(2017)
Rok vydání: 2023
Předmět:
Zdroj: Mechanics of Materials
Mechanics of Materials, 2023, 182, pp.104668. ⟨10.1016/j.mechmat.2023.104668⟩
Mechanics of Materials, 182
ISSN: 0167-6636
1872-7743
DOI: 10.1016/j.mechmat.2023.104668
Popis: International audience; Advancements in machine learning have sparked significant interest in designing mechanical metamaterials, i.e., materials that derive their properties from their inherent microstructure rather than just their constituent material. We propose a data-driven exploration of the design space of growth-based cellular metamaterials based on star-shaped distances. These two-dimensional metamaterials are based on periodically-repeating unit cells consisting of material and void patterns with non-trivial geometries. Machine learning models exploiting large datasets are then employed to inverse design growth-based metamaterials for tailored anisotropic stiffness. Firstly, a forward model is created to bypass the growth and homogenization process and accurately predict the mechanical properties given a finite set of design parameters. Secondly, an inverse model is used to invert the structure–property maps and enable the accurate prediction of designs for a given anisotropic stiffness query. We successfully demonstrate the frameworks’ generalization capabilities by inverse designing for stiffness properties chosen from outside the domain of the design space.
Databáze: OpenAIRE