Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis

Autor: Päivi M. Ojala, Pawan Pyakurel, Annika Järviluoma, Johanna Furuhjelm, Marikki Laiho, Maria Wirzenius, Sari Jäämaa, Christel Pussinen, Peter Biberfeld, Kari Alitalo, Sonja Koopal
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: PLoS Pathogens, Vol 3, Iss 9, Pp 1348-1360 (2007)
PLoS Pathogens
ISSN: 1553-7374
1553-7366
Popis: Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV)–infected tumor cells that express endothelial cell (EC) markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.
Author Summary Recent findings have indicated that DNA hyper-replication triggered by oncogenes can induce cellular senescence, which together with the oncogene-induced DNA damage checkpoint confers a barrier to tumorigenesis. Kaposi sarcoma herpesvirus (KSHV) can infect human dermal microvascular endothelial cells (ECs) in vitro, but KSHV infection does not seem to provide growth advantage to the cells, but rather leads to retarded growth. Moreover, the proliferative index has long been known to be low in KSHV-infected spindle cells in Kaposi sarcoma (KS) tumors. Our results provide an explanation for these observations by showing that activation of the DNA damage response, exerted by KSHV and a latent viral protein v-cyclin, functions as a barrier against transformation of KSHV-infected cells. Interestingly, the antiproliferative checkpoints are activated during the initial stages of KSHV infection and KS tumorigenesis. During the course of infection, the infected cells are imposed to overcome the checkpoint, and oncogenic stress elicited by the expression of v-cyclin may further contribute to the induction of genomic instability and malignant transformation.
Databáze: OpenAIRE