The strong maximum principle for Schrödinger operators on fractals
Autor: | Marius Ionescu, Kasso A. Okoudjou, Luke G. Rogers |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
harnack’s inequality
secondary 35j25 General Mathematics 010102 general mathematics 01 natural sciences maximum principles sierpiński gasket symbols.namesake Fractal Maximum principle primary 35j15 28a80 0103 physical sciences symbols QA1-939 010307 mathematical physics 0101 mathematics analysis on fractals schrödinger operators Schrödinger's cat Mathematics Mathematical physics |
Zdroj: | Demonstratio Mathematica, Vol 52, Iss 1, Pp 404-409 (2019) |
ISSN: | 2391-4661 |
Popis: | We prove a strong maximum principle for Schrödinger operators defined on a class of postcritically finite fractal sets and their blowups without boundary. Our primary interest is in weaker regularity conditions than have previously appeared in the literature; in particular we permit both the fractal Laplacian and the potential to be Radon measures on the fractal. As a consequence of our results, we establish a Harnack inequality for solutions of these operators. |
Databáze: | OpenAIRE |
Externí odkaz: |