Autor: |
Axel Brando, Isabel Serra, Enrico Mezzetti, Francisco J. Cazorla, Jon Perez-Cerrolaza, Jaume Abella |
Přispěvatelé: |
Barcelona Supercomputing Center |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Popis: |
An increasing number of critical functionalities integrated in embedded critical systems rely on deep learning (DL) technology. This article summarizes certain key aspects of DL’s intrinsic stochastic and training-data-dependent nature that are at odds with current domain-specific functional safety standards. We exemplify how redundancy and diversity of neural networks can help to reconcile DL technology and functional safety requirements. The research leading to these results has received funding from the European Research Council (ERC) grant agreement No. 772773 (SuPerCom), the Horizon Europe Programme under the SAFEXPLAIN Project (www.safexplain.eu), grant agreement num.101069595, and the Spanish Ministry of Science and Innovation under grant PID2019-107255GBC21/AEI/10.13039/501100011033. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|