The circle quantum group and the infinite root stack of a curve
Autor: | Olivier Schiffmann, Francesco Sala |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Quantum group
General Mathematics 010102 general mathematics Subalgebra General Physics and Astronomy Order (ring theory) Hall algebras Quantum groups Direct limit 01 natural sciences Coherent sheaf Shuffle algebras Combinatorics Hall algebra Fundamental representation Root stacks High Energy Physics::Experiment 0101 mathematics [MATH]Mathematics [math] Mathematics::Representation Theory Realization (systems) ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Selecta Mathematica (New Series) Selecta Mathematica (New Series), Springer Verlag, 2019, 25 (5), ⟨10.1007/s00029-019-0521-8⟩ |
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-019-0521-8⟩ |
Popis: | In the present paper, we give a definition of the quantum group $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1))$$ of the circle $$S^1:={\mathbb {R}}/{\mathbb {Z}}$$, and its fundamental representation. Such a definition is motivated by a realization of a quantum group $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1_{\mathbb {Q}}))$$ associated to the rational circle $$S^1_{\mathbb {Q}}:={\mathbb {Q}}/{\mathbb {Z}}$$ as a direct limit of $$\mathbf {U}_\upsilon (\widehat{\mathfrak {sl}}(n))$$’s, where the order is given by divisibility of positive integers. The quantum group $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1_{\mathbb {Q}}))$$ arises as a subalgebra of the Hall algebra of coherent sheaves on the infinite root stack $$X_\infty $$ over a fixed smooth projective curve X defined over a finite field. Via this Hall algebra approach, we are able to realize geometrically the fundamental and the tensor representations, and a family of symmetric tensor representations, depending on the genus $$g_X$$, of $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1_{\mathbb {Q}}))$$. Moreover, we show that $$\mathbf {U}_\upsilon (\widehat{\mathfrak {sl}}(+\infty ))$$ and $$\mathbf {U}_\upsilon (\widehat{\mathfrak {sl}}(\infty ))$$ are subalgebras of $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1_{\mathbb {Q}}))$$. As proved by T. Kuwagaki in the appendix, the quantum group $$\mathbf {U}_\upsilon (\mathfrak {sl}(S^1))$$ naturally arises as well in the mirror dual picture, as a Hall algebra of constructible sheaves on the circle $$S^1$$. |
Databáze: | OpenAIRE |
Externí odkaz: |