A pressure solution creep law for quartz from indentation experiments
Autor: | Robert Guiguet, Jean-Pierre Gratier, Dominique Bernard, François Renard, Liliane Jenatton |
---|---|
Přispěvatelé: | Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire de Géodynamique des Chaines Alpines (LGCA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), Physics of Geological Processes [Oslo] (PGP), Department of Physics [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Department of Geosciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Central des Ponts et Chaussées (LCPC)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB) |
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
Atmospheric Science
010504 meteorology & atmospheric sciences Soil Science Mineralogy crust Aquatic Science 010502 geochemistry & geophysics Oceanography 01 natural sciences creep Brittleness Geochemistry and Petrology Earth and Planetary Sciences (miscellaneous) Composite material Dissolution Quartz 0105 earth and related environmental sciences Earth-Surface Processes Water Science and Technology pressure-solution Ecology deformation Paleontology Forestry Strain rate quartz Geophysics Deformation mechanism Creep Space and Planetary Science [SDU]Sciences of the Universe [physics] Pressure solution Differential stress sealing Geology |
Zdroj: | Journal of Geophysical Research : Solid Earth Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2009, 114, pp.B03403. ⟨10.1029/2008JB005652⟩ Scopus-Elsevier |
ISSN: | 2169-9313 2169-9356 |
Popis: | International audience; Indenter experiments have been performed on quartz crystals in order to establish a pressure solution creep law relevant at upper- to mid-crustal conditions. This deformation mechanism contributes to Earth's crust geodynamics, controlling processes as different as fault permeability, strength, and stress evolution during inter-seismic periods or mechano-chemical differentiation during diagenesis and metamorphism. Indenter experiments have been performed at 350°C and 20-120 MPa during months with differential stress varying from 25 to 350 MPa. Several experimental parameters were varied: nature of quartz (synthetic or natural), nature of fluid, manner the solid/solution/solid interface was filled, orientation of the indented surfaces versus quartz crystallographic c-axis. Significant strain rates could only be obtained when using high solubility solutions (NaOH 1 mole/l). Displacement rates of the indenter were found activated by differential stress, with exponential dependence, as theoretically predicted. The mean thickness of the trapped fluid phase below the indenter was estimated in the range 2-10 nanometers. Moreover, the development of this trapped fluid phase was relatively fast, and allowed fluid penetration into previously dry contact regions by marginal dissolution. The indenter displacement rate was driven by differential stress and its kinetics was controlled by diffusion along the trapped fluid and the development of a morphological roughness along the interface. Conversely, marginal strain energy driven dissolution was observed around the indenter, and its kinetics was controlled by free-surface reaction. These experimental results are applied to model the interactions between pressure solution and brittle processes in fault zones, providing characteristic time scales for post-seismic transitory creep and sealing processes in quartz-rich rocks. |
Databáze: | OpenAIRE |
Externí odkaz: |