Surface Activity of Ethoxylate Surfactants with Different Hydrophobic Architectures: The Effect of Layer Substructure on Surface Tension and Adsorption

Autor: Robert Thomas, James R. Reeve, Jeffrey Penfold
Rok vydání: 2021
Předmět:
Zdroj: Langmuir. 37:9269-9280
ISSN: 1520-5827
0743-7463
DOI: 10.1021/acs.langmuir.1c01588
Popis: A series of nonionic ethoxylate surfactants containing different combinations of alkyl, phenyl, and adamantyl units in nine different arrangements, each combined with penta- and hexa-ethylene glycol groups, were synthesized and purified. The surface properties of all of the surfactants were investigated at the air-water (A-W) interface using surface tension (ST) to determine the limiting surface excess (Γlim), the limiting surface tension (σlim), and the critical micelle concentration (CMC). A smaller selection was investigated at the hydrophilic silica-water interface by neutron reflectometry to obtain the thickness of the adsorbed layer and the total adsorption at the CMC. An unusual and largely unrecognized feature of the ethoxylate group is that it is both hydrophilic and hydrophobic. It was found possible to account for the variation of σlim and Γlim of all of the adsorbed layers in terms of a balance of the estimated STs of the sublayers forming the overall adsorbed layer, including that of the underlying ethoxylate layer. The values of σlim were found to be highest for phenyl- and adamantyl-capped surfactants and lowest mainly when there was more than one methyl group at the surface. However, in terms of the concentration required to reach a given low ST, increasing the number of attached methyl groups was found to be less effective than using a smaller number of better-placed methyl groups. At the solid-liquid interface, adsorption at or above the CMC was in all cases in the form of a fragmented bilayer whose coverage varied approximately linearly with the packing parameter. However, results on the phenyl-capped surfactants showed that the high ST exhibited by these surfactants at the A-W interface becomes a high cohesion energy in the interior of the bilayer and they exhibited significantly higher adsorption than expected from simple packing arguments.
Databáze: OpenAIRE