The Higson–Roe sequence for étale groupoids. II. The universal sequence for equivariant families
Autor: | Indrava Roy, Moulay-Tahar Benameur |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Sequence Algebra and Number Theory Series (mathematics) Mathematics::Operator Algebras 010102 general mathematics Mathematics - Operator Algebras Mathematics::General Topology 19K33 19K35 16. Peace & justice 01 natural sciences Mathematics - Functional Analysis Mathematics::K-Theory and Homology Surgery exact sequence Mathematics::Category Theory Mathematics - K-Theory and Homology 0103 physical sciences Mathematics::Metric Geometry Equivariant map 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematical Physics Mathematics |
Zdroj: | Journal of Noncommutative Geometry. 15:1-39 |
ISSN: | 1661-6952 |
DOI: | 10.4171/jncg/394 |
Popis: | This is the second part of our series about the Higson-Roe sequence for \'etale groupoids. We devote this part to the proof of the universal $K$-theory surgery exact sequence which extends the seminal results of N. Higson and J. Roe to the case of transformation groupoids. In the process, we prove the expected functoriality properties as well as the Paschke-Higson duality theorem. Comment: 27 pages, J. Noncommutative Geometry, 2021 |
Databáze: | OpenAIRE |
Externí odkaz: |