Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells
Autor: | Hae Min Kim, Joon Yong Bae, Eun Seob Sim, Young Moo Lee, Sun Pyo Kim, Won Hee Lee, Jue-Hyuk Jang, Sung Jong Yoo, Yongbing Zhuang, Chuan Hu, Yong-Chae Chung, Nanjun Chen, Ho Hyun Wang |
---|---|
Rok vydání: | 2020 |
Předmět: |
Alkaline fuel cell
Multidisciplinary Ion exchange Science Aryl General Physics and Astronomy Proton exchange membrane fuel cell 02 engineering and technology General Chemistry Conductivity 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences General Biochemistry Genetics and Molecular Biology Article 0104 chemical sciences chemistry.chemical_compound Membrane Adsorption chemistry Chemical engineering Copolymer 0210 nano-technology Fuel cells |
Zdroj: | Nature Communications Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
ISSN: | 2041-1723 |
Popis: | Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components—anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH− conductivity of 208 mS cm−1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm−2 in H2-O2 and 1.25 W cm−2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm−2 current density for ~200 h. Developing high-performance anion exchange membranes and ionomers is crucial for low-cost alkaline fuel cells. Here, the authors explore rigid and high ion conductive poly(fluorenyl aryl piperidinium) copolymers, extending their applications to anion exchange membrane fuel cells. |
Databáze: | OpenAIRE |
Externí odkaz: |