A note on approximation of continuous functions on normed spaces
Autor: | M. A. Mytrofanov, A. V. Ravsky |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Carpathian Mathematical Publications. 12:107-110 |
ISSN: | 2313-0210 2075-9827 |
DOI: | 10.15330/cmp.12.1.107-110 |
Popis: | Let $X$ be a real separable normed space $X$ admitting a separating polynomial. We prove that each continuous function from a subset $A$ of $X$ to a real Banach space can be uniformly approximated by restrictions to $A$ of functions which are analytic on open subsets of $X$. Also we prove that each continuous function to a complex Banach space from a complex separable normed space admitting a separating $*$-polynomial can be uniformly approximated by $*$-analytic functions. Comment: 4 pages |
Databáze: | OpenAIRE |
Externí odkaz: |