The images of polynomials of derivations
Autor: | Tsiu-Kwen Lee, Münevver Pınar Eroǧlu |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Communications in Algebra. 45:4550-4556 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927872.2016.1271422 |
Popis: | Let R be a simple GPI-ring (i.e., a simple ring satisfying a nontrivial generalized polynomial identity) with a nonzero derivation delta and with Martindale symmetric ring of quotients Q. Motivated by the Noether-Skolem theorem, we characterize linear differential maps phi: x bar right arrow Sigma(i,j) a(ij)delta(j) (X) b(ij) for x is an element of R, where a(ij),b(ij) are finitely many elements in Q, such that phi(R) subset of [R,R]. The result is described and proved in terms of polynomials in Q[t;delta], the Ore extension of Q by the derivation delta. |
Databáze: | OpenAIRE |
Externí odkaz: |