Photonic Readout of Superconducting Nanowire Single Photon Counting Detectors
Autor: | Amir H. Atabaki, Dodd Gray, Emma E. Wollman, Rajeev J. Ram, Marc de Cea, Matthew D. Shaw |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Optical fiber
Materials science Fibre optics and optical communications Physics::Optics lcsh:Medicine 02 engineering and technology 01 natural sciences Article Electromagnetic interference law.invention 010309 optics law Wavelength-division multiplexing 0103 physical sciences lcsh:Science Multidisciplinary Optoelectronic devices and components business.industry Detector lcsh:R Integrated optics 021001 nanoscience & nanotechnology Photon counting Modulation Superconducting devices Optoelectronics lcsh:Q Photonics 0210 nano-technology business Data transmission |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-8 (2020) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-65971-5 |
Popis: | Scalable, low power, high speed data transfer between cryogenic (0.1–4 K) and room temperature environments is essential for the realization of practical, large-scale systems based on superconducting technologies. A promising approach to overcome the limitations of conventional wire-based readout is the use of optical fiber communication. Optical fiber presents a 100–1,000x lower heat load than conventional electrical wiring, relaxing the requirements for thermal anchoring, and is also immune to electromagnetic interference, which allows routing of sensitive signals with improved robustness to noise and crosstalk. Most importantly, optical fibers allow for very high bandwidth densities (in the Tbps/mm2 range) by carrying multiple signals through the same physical fiber (Wavelength Division Multiplexing, WDM). Here, we demonstrate for the first time optical readout of a superconducting nanowire single-photon detector (SNSPD) directly coupled to a CMOS photonic modulator, without the need for an interfacing device. By operating the modulator in the forward bias regime at a temperature of 3.6 K, we achieve very high modulation efficiency (1,000–10,000 pm/V) and a low input impedance of 500 Ω with a low power dissipation of 40 μW. This allows us to obtain optical modulation with the low, millivolt-level signal generated by the SNSPD. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |