The Fair OWA One-to-one Assignment Problem: NP-hardness and Polynomial Time Special Cases

Autor: Michel Minoux, Julien Lesca, Patrice Perny
Přispěvatelé: Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), DECISION, LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Algorithmica
Algorithmica, Springer Verlag, In press, ⟨10.1007/s00453-018-0434-5⟩
ISSN: 0178-4617
1432-0541
DOI: 10.1007/s00453-018-0434-5⟩
Popis: We consider a one-to-one assignment problem consisting of matching n objects with n agents. Any matching leads to a utility vector whose n components measure the satisfaction of the various agents. We want to find an assignment maximizing a global utility defined as an ordered weighted average (OWA) of the n individual utilities. OWA weights are assumed to be non-increasing with ranks of satisfaction so as to include an idea of fairness in the definition of social utility. We first prove that the problem is NP-hard; then we propose a polynomial algorithm under some restrictions on the set of admissible weight vectors, proving that the problem belongs to XP.
Databáze: OpenAIRE