Release and Detection of microRNA by Combining Magnetic Hyperthermia and Electrochemistry Modules on a Microfluidic Chip
Autor: | Jean Gamby, Jean-Michel Siaugue, Marie-Charlotte Horny, Vincent Dupuis |
---|---|
Přispěvatelé: | Laboratoire Interfaces et Systèmes Electrochimiques (LISE), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), LabEx MiChem |
Rok vydání: | 2020 |
Předmět: |
channel microelectrode
Microfluidics early diagnostics 02 engineering and technology lcsh:Chemical technology 01 natural sciences Biochemistry Analytical Chemistry law.invention [SPI]Engineering Sciences [physics] law Lab-On-A-Chip Devices Electrochemistry lcsh:TP1-1185 core–shell nanoparticles Instrumentation ComputingMilieux_MISCELLANEOUS [PHYS]Physics [physics] magnetic release Equipment Design Microfluidic Analytical Techniques 021001 nanoscience & nanotechnology Chip Atomic and Molecular Physics and Optics Inductance nucleic acids 0210 nano-technology Nucleic Acid Amplification Techniques Microfabrication Superparamagnetism Materials science Nanotechnology 010402 general chemistry Article [CHIM]Chemical Sciences Humans Hyperthermia Magnetic hyperthermia [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics Electrical and Electronic Engineering Magnetic Phenomena Lab-on-a-chip core-shell nanoparticles Ferrite core 0104 chemical sciences MicroRNAs [PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] amorphous carbon nitride |
Zdroj: | Sensors Sensors, MDPI, 2021, 21 (1), pp.185. ⟨10.3390/s21010185⟩ Sensors (Basel, Switzerland) Sensors, Vol 21, Iss 185, p 185 (2021) Volume 21 Issue 1 |
ISSN: | 1424-8220 |
Popis: | The heating of a biologic solution is a crucial part in an amplification process such as the catalytic detection of a biological target. However, in many situations, heating must be limited in microfluidic devices, as high temperatures can cause the denaturation of the chip components. Local heating through magnetic hyperthermia on magnetic nano-objects has opened the doors to numerous improvements, such as for oncology where a reduced heating allows the synergy of chemotherapy and thermotherapy. Here we report on the design and implementation of a lab on chip without global heating of samples. It takes advantage of the extreme efficiency of DNA-modified superparamagnetic core&ndash shell nanoparticles to capture complementary sequences (microRNA-target), uses magnetic hyperthermia to locally release these targets, and detects them through electrochemical techniques using ultra-sensitive channel DNA-modified ultramicroelectrodes. The combination of magnetic hyperthermia and microfluidics coupled with on-chip electrochemistry opens the way to a drastic reduction in the time devoted to the steps of extraction, amplification and nucleic acids detection. The originality comes from the design and microfabrication of the microfluidic chip suitable to its insertion in the millimetric gap of toric inductance with a ferrite core. |
Databáze: | OpenAIRE |
Externí odkaz: |