On anti bounce back boundary condition for lattice Boltzmann schemes
Autor: | François Dubois, Mohamed Mahdi Tekitek, Pierre Lallemand |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), Beijing Computational Science Research Center [Beijing] (CSRC), Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis (FST), Université de Tunis El Manar (UTM) |
Rok vydání: | 2020 |
Předmět: |
Asymptotic analysis
linear acoustic Lattice Boltzmann methods FOS: Physical sciences Boundary (topology) Physics - Classical Physics 010103 numerical & computational mathematics 01 natural sciences Physics::Fluid Dynamics FOS: Mathematics [NLIN.NLIN-CG]Nonlinear Sciences [physics]/Cellular Automata and Lattice Gases [nlin.CG] Mathematics - Numerical Analysis [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Boundary value problem 0101 mathematics Boundary cell Mathematics heat equation Mathematical analysis Classical Physics (physics.class-ph) Numerical Analysis (math.NA) Hagen–Poiseuille equation Taylor expansion method PACS numbers: 0270Ns 0520Dd 010101 applied mathematics Computational Mathematics Computational Theory and Mathematics Flow (mathematics) Modeling and Simulation 4710+g Heat equation [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computers & Mathematics with Applications Computers & Mathematics with Applications, Elsevier, 2020, ⟨10.1016/j.camwa.2019.03.039⟩ |
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2019.03.039 |
Popis: | International audience; In this contribution, we recall the derivation of the anti bounce back boundary condition for the D2Q9 lattice Boltzmann scheme. We recall various elements of the state of the art for anti bounce back applied to linear heat and acoustics equations and in particular the possibility to take into account curved boundaries. We present an asymptotic analysis that allows an expansion of all the fields in the boundary cells. This analysis based on the Taylor expansion method confirms the well known behaviour of anti bounce back boundary for the heat equation. The analysis puts also in evidence a hidden differential boundary condition in the case of linear acoustics. Indeed, we observe discrepancies in the first layers near the boundary. To reduce these discrepancies, we propose a new boundary condition mixing bounce back for the oblique links and anti bounce back for the normal link. This boundary condition is able to enforce both pressure and tangential velocity on the boundary. Numerical tests for the Poiseuille flow illustrate our theoretical analysis and show improvements in the quality of the flow. |
Databáze: | OpenAIRE |
Externí odkaz: |