On the Convergence to Equilibrium of Unbounded Observables Under a Family of Intermittent Interval Maps

Autor: Johannes Kautzsch, Marc Kesseböhmer, Tony Samuel
Rok vydání: 2015
Předmět:
Zdroj: Annales Henri Poincaré. 17:2585-2621
ISSN: 1424-0661
1424-0637
DOI: 10.1007/s00023-015-0451-8
Popis: We consider a family $${\{T_{r}: [0, 1] \circlearrowleft \}_{r\in[0, 1]}}$$ of Markov interval maps interpolating between the tent map $${T_{0}}$$ and the Farey map $${T_{1}}$$ . Letting $${\mathcal{P}_{r}}$$ denote the Perron–Frobenius operator of $${T_{r}}$$ , we show, for $${\beta \in [0, 1]}$$ and $${\alpha \in (0, 1)}$$ , that the asymptotic behaviour of the iterates of $${\mathcal{P}_{r}}$$ applied to observables with a singularity at $${\beta}$$ of order $${\alpha}$$ is dependent on the structure of the $${\omega}$$ -limit set of $${\beta}$$ with respect to $${T_{r}}$$ . The results presented here are some of the first to deal with convergence to equilibrium of observables with singularities.
Databáze: OpenAIRE