Discovery of EMRE in fungi resolves the true evolutionary history of the mitochondrial calcium uniporter

Autor: Fabiana Perocchi, Jennifer Wettmarhausen, Toni Gabaldón, Alexandros A. Pittis, Alberto Cebrian-Serrano, Valerie Goh
Přispěvatelé: Barcelona Supercomputing Center
Rok vydání: 2020
Předmět:
0301 basic medicine
Opisthokont
General Physics and Astronomy
02 engineering and technology
Mitochondrion
0302 clinical medicine
Simulació per ordinador
Phylogenomics
Gene duplication
Mitochondrial calcium uptake
Inner mitochondrial membrane
lcsh:Science
Phylogeny
Candida
0303 health sciences
Likelihood Functions
Multidisciplinary
Phylogenetic tree
biology
Eukaryote
021001 nanoscience & nanotechnology
Mitochondria
Phylogenetics
Chytridiomycota
Holozoa
0210 nano-technology
Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC]
Science
Saccharomyces cerevisiae
Article
General Biochemistry
Genetics and Molecular Biology

Evolution
Molecular

Fungal Proteins
03 medical and health sciences
Species Specificity
Humans
Amino Acid Sequence
Uniporter
030304 developmental biology
General Chemistry
biology.organism_classification
Yeast
030104 developmental biology
Evolutionary biology
lcsh:Q
Calcium
Calcium Channels
030217 neurology & neurosurgery
Genètica
HeLa Cells
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
Nature Communications
Nat. Commun. 11, 4031 (2020)
ISSN: 2041-1723
Popis: Calcium (Ca2+) influx into mitochondria occurs through a Ca2+-selective uniporter channel, which regulates essential cellular processes in eukaryotic organisms. Previous evolutionary analyses of its pore-forming subunits MCU and EMRE, and gatekeeper MICU1, pinpointed an evolutionary paradox: the presence of MCU homologs in fungal species devoid of any other uniporter components and of mt-Ca2+ uptake. Here, we trace the mt-Ca2+ uniporter evolution across 1,156 fully-sequenced eukaryotes and show that animal and fungal MCUs represent two distinct paralogous subfamilies originating from an ancestral duplication. Accordingly, we find EMRE orthologs outside Holoza and uncover the existence of an animal-like uniporter within chytrid fungi, which enables mt-Ca2+ uptake when reconstituted in vivo in the yeast Saccharomyces cerevisiae. Our study represents the most comprehensive phylogenomic analysis of the mt-Ca2+ uptake system and demonstrates that MCU, EMRE, and MICU formed the core of the ancestral opisthokont uniporter, with major implications for comparative structural and functional studies.
The mitochondrial calcium uptake system, crucial for cellular processes, evolved in ancient eukaryotes. Here, authors perform a phylogenomic analysis across 1,156 eukaryotes, and show that previously identified animal and fungal genes in this system originated from an ancestral duplication.
Databáze: OpenAIRE