Automated Design of Dynamic Programming Schemes for RNA Folding with Pseudoknots
Autor: | Marchand, Bertrand, Will, Sebastian, Berkemer, Sarah J., Bulteau, Laurent, Ponty, Yann |
---|---|
Přispěvatelé: | Marchand, Bertrand, Décrypter les architectures complexes d'ARN par sondage et interactions - - PaRNAssus2019 - ANR-19-CE45-0023 - AAPG2019 - VALID, Algorithms and Models for Integrative BIOlogy (AMIBIO), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique Gaspard-Monge (LIGM), École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Computational biology
dynamic programming Quantitative Biology::Biomolecules Dynamic programming DP treewidth Theory of computation → Dynamic programming RNA folding prediction RNA folding Applied computing → Computational biology [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] |
Zdroj: | WABI 2022-22nd Workshop on Algorithms in Bioinformatics WABI 2022-22nd Workshop on Algorithms in Bioinformatics, Sep 2022, Potsdam, Germany |
DOI: | 10.4230/lipics.wabi.2022.7 |
Popis: | Despite being a textbook application of dynamic programming (DP) and routine task in RNA structure analysis, RNA secondary structure prediction remains challenging whenever pseudoknots come into play. To circumvent the NP-hardness of energy minimization in realistic energy models, specialized algorithms have been proposed for restricted conformation classes that capture the most frequently observed configurations. While these methods rely on hand-crafted DP schemes, we generalize and fully automatize the design of DP pseudoknot prediction algorithms. We formalize the problem of designing DP algorithms for an (infinite) class of conformations, modeled by (a finite number of) fatgraphs, and automatically build DP schemes minimizing their algorithmic complexity. We propose an algorithm for the problem, based on the tree-decomposition of a well-chosen representative structure, which we simplify and reinterpret as a DP scheme. The algorithm is fixed-parameter tractable for the tree-width tw of the fatgraph, and its output represents a 𝒪(n^{tw+1}) algorithm for predicting the MFE folding of an RNA of length n. Our general framework supports general energy models, partition function computations, recursive substructures and partial folding, and could pave the way for algebraic dynamic programming beyond the context-free case. LIPIcs, Vol. 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022), pages 7:1-7:24 |
Databáze: | OpenAIRE |
Externí odkaz: |