Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals

Autor: G.V. Rumyantseva, C H Kennedy, Ronald P. Mason
Rok vydání: 1991
Předmět:
Zdroj: ResearcherID
ISSN: 0021-9258
DOI: 10.1016/s0021-9258(18)54655-x
Popis: Radical production from alkyl hydrazines (i.e. phenelzine and benzylhydrazine) in rat liver microsomes has been proposed to occur via cytochrome P-450-catalyzed one-electron oxidation followed by beta-scission of an alkyl radical. In microsomes treated with phenelzine (2-phenylethylhydrazine), NADPH, and the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (4-POBN), the 4-POBN/2-phenylethyl radical adduct was detected by electron paramagnetic resonance spectroscopy. The addition of catalase and superoxide dismutase resulted in a 28.5 and 24% decrease in radical production, respectively. The concentration of the 4-POBN/2-phenylethyl radical adduct decreased significantly in the presence of metal chelators, i.e. EDTA, diethylenetriaminepentaacetic acid (DTPA), or deferoxamine mesylate. When phenelzine was incubated with deferoxamine mesylate-washed microsomes and NADPH in Chelex-treated incubation buffer, no significant radical adduct formation was detected. Addition of iron-chelator complexes (either Fe(3+)-DTPA or Fe(3+)-EDTA) greatly stimulated production of the 4-POBN/2-phenylethyl radical adduct in this system. These results show that the 2-phenylethyl radical produced from phenelzine in a microsomal system arises via a trace transition metal-catalyzed reaction. This reaction may occur through oxidation of phenelzine by the hydroxyl radical, which has also been spin-trapped with 4-POBN in this system.
Databáze: OpenAIRE