Parameter estimation in spatial econometric models with non-random missing data

Autor: Shohei Uno, Hajime Seya, Masashi Tomari
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied Economics Letters. 28(6):440-446
ISSN: 1350-4851
Popis: This study examines the problem of parameter estimation in spatial econometric/social interaction models with non-random missing outcome data. First, we construct a sample selection model considering spatial lag (autoregressive) dependence. Then, we suggest a parameter estimation method for this model by slightly modifying the Bayesian Markov chain Monte Carlo algorithm proposed in an existing study. A simple illustration indicates that the proposed parameter estimation method performs well overall if the spatial autocorrelation is moderate (spatial parameter equals 0.5 or less), even under a relatively high missing data ratio (around 40%).
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje