Parameter estimation in spatial econometric models with non-random missing data
Autor: | Shohei Uno, Hajime Seya, Masashi Tomari |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Sample selection
Economics and Econometrics 050208 finance Estimation theory Computer science Bayesian Markov chain Monte Carlo (MCMC) 05 social sciences social interaction Missing data spatial autocorrelation Econometric model 0502 economics and business Econometrics 050207 economics Outcome data Construct (philosophy) Spatial analysis spatial lag model (SLM) |
Zdroj: | Applied Economics Letters. 28(6):440-446 |
ISSN: | 1350-4851 |
Popis: | This study examines the problem of parameter estimation in spatial econometric/social interaction models with non-random missing outcome data. First, we construct a sample selection model considering spatial lag (autoregressive) dependence. Then, we suggest a parameter estimation method for this model by slightly modifying the Bayesian Markov chain Monte Carlo algorithm proposed in an existing study. A simple illustration indicates that the proposed parameter estimation method performs well overall if the spatial autocorrelation is moderate (spatial parameter equals 0.5 or less), even under a relatively high missing data ratio (around 40%). |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |