Rayleigh waves in symmetry planes of crystals: explicit secular equations and some explicit wave speeds
Autor: | Michel Destrade |
---|---|
Přispěvatelé: | Laboratoire de modélisation en mécanique (LMM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), ~ |
Rok vydání: | 2013 |
Předmět: |
Surfaces et interfaces
Plane symmetry FOS: Physical sciences Condensed Matter - Soft Condensed Matter Génération Incompressible material Acoustique symbols.namesake Matière condensée : organisation et dynamique Monoclinic crystals Quantum mechanics Quartic function propagation [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] General Materials Science Rayleigh wave Rayleigh waves Orthorhombic crystals Instrumentation Physics Symmetry (physics) détection Mechanics of Materials Surface wave symbols Soft Condensed Matter (cond-mat.soft) Orthorhombic crystal system Structure de cristaux Monoclinic crystal system |
Zdroj: | Mechanics of Materials Mechanics of Materials, 2003, 35, pp.931 |
ISSN: | 0167-6636 1872-7743 |
DOI: | 10.48550/arxiv.1304.7897 |
Popis: | Rayleigh waves are considered for crystals possessing at least one plane of symmetry. The secular equation is established explicitly for surface waves propagating in any direction of the plane of symmetry, using two different methods. This equation is a quartic for the squared wave speed in general, and a biquadratic for certain directions in certain crystals, where it may itself be solved explicitly. Examples of such materials and directions are found in the case of monoclinic crystals with the plane of symmetry at x3=0. The cases of orthorhombic materials and of incompressible materials are also treated. peer-reviewed |
Databáze: | OpenAIRE |
Externí odkaz: |