On the Experimental Feasibility of Quantum State Reconstruction via Machine Learning

Autor: Ryan T. Glasser, Brian T. Kirby, Sanjaya Lohani, Thomas A. Searles
Rok vydání: 2021
Předmět:
Zdroj: IEEE Transactions on Quantum Engineering, Vol 2, Pp 1-10 (2021)
ISSN: 2689-1808
Popis: We determine the resource scaling of machine learning-based quantum state reconstruction methods, in terms of inference and training, for systems of up to four qubits when constrained to pure states. Further, we examine system performance in the low-count regime, likely to be encountered in the tomography of high-dimensional systems. Finally, we implement our quantum state reconstruction method on an IBM Q quantum computer, and compare against both unconstrained and constrained MLE state reconstruction.
9 pages
Databáze: OpenAIRE