Autor: |
Annette Kirsch, Matthias Fritzsche, Joerg Schlingemann, Christoph Saal, Romane Baranowski, Emmanuel Desmartin, Nicholas O'Neill, Maic Seegel, Tony Bristow, Mark Harrison, Phillip Krueger, Giorgio Blom, Anja Goettsche, Brunhilde Guessregen, Philipp Reifenberg, Sebastian Hickert, Alexandra Cimelli, Stefan Leicht, Bruno Mouton, Elodie Barrau, Judith Keitel |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 168 |
ISSN: |
1879-0720 |
Popis: |
Background For nearly three years, the concerns regarding trace levels of N-nitrosamines in pharmaceuticals and the associated cancer risk have significantly expanded and are a major issue facing the global pharmaceutical industry. N-nitrosodimethylamine (NDMA) found in formulations of the popular anti-diabetic drug metformin is a prominent example. This has resulted in product recalls raising the profile within the media. Issues of method robustness, sample preparation and several unexpected sources of nitrosamine contamination have been highlighted as false positive risks. It has become apparent that the identification of the root causes of artefactual formation of nitrosamines must be identified to mitigate risk associated with the analysis. Methods A comparison study between four laboratories, across three companies was designed, employing orthogonal mass spectrometric methods for the quantification of NDMA in two metformin immediate release (IR) formulations and one extended release (XR) formulation. These were 2x LC-MS/MS, GC–MS/MS and GC-HRMS. Results Good agreement of results was obtained for the IR formulations. However, we measured higher concentrations of NDMA in the XR formulation using GC-MS/MS compared to LC-MS/MS. We could show that this was due to artefactual (in situ) formation of NDMA when samples were extracted with dichloromethane. Removal of dimethylamine (DMA) and nitrite from the extracted sample or the addition of a nitrosation scavenger are shown to be effective remedies. NDMA in situ formation was not observed in 10% MeOH or acetonitrile. Conclusion Metformin pharmaceuticals contain traces of the API impurity DMA as well as inorganic nitrite from excipients. This can lead to artefactual formation of NDMA and hence false positive results if DCM is used for sample extraction. Similar artefacts are likely also in other pharmaceuticals if these contain the secondary amine precursor of the respective nitrosamine analyte. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|