A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling

Autor: Peter J. Shepard, Bruce Seligmann, Diana E. Goyena, Harper C. VanSteenhouse, Joel Mccomb, Joanne M. Yeakley
Rok vydání: 2017
Předmět:
0301 basic medicine
Molecular biology
Cellular differentiation
lcsh:Medicine
Gene Expression
Artificial Gene Amplification and Extension
Hydroxamic Acids
Biochemistry
Polymerase Chain Reaction
Transcriptome
Sequencing techniques
0302 clinical medicine
Gene expression
Ligation Assay
lcsh:Science
RNA structure
Multidisciplinary
Physics
RNA sequencing
Genomics
Gene Pool
Nucleic acids
Physical sciences
030220 oncology & carcinogenesis
Nucleic acid thermodynamics
MCF-7 Cells
RNA annealing
RNA extraction
Transcriptome Analysis
Research Article
medicine.drug
Annealing (genetics)
Biophysics
Computational biology
Biology
Sensitivity and Specificity
03 medical and health sciences
Complementary DNA
Genetics
medicine
Humans
RNA folding
Gene
Evolutionary Biology
Molecular Biology Assays and Analysis Techniques
Population Biology
Gene Expression Profiling
lcsh:R
Reproducibility of Results
Biology and Life Sciences
Computational Biology
Genome Analysis
Research and analysis methods
Gene expression profiling
Macromolecular structure analysis
Molecular biology techniques
030104 developmental biology
Trichostatin A
RNA
lcsh:Q
Population Genetics
Zdroj: PLoS ONE
PLoS ONE, Vol 12, Iss 5, p e0178302 (2017)
ISSN: 1932-6203
Popis: The use of gene expression signatures to classify compounds, identify efficacy or toxicity, and differentiate close analogs relies on the sensitivity of the method to identify modulated genes. We used a novel ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq®, to determine whether previously unreported compound-responsive genes could be identified and incorporated into a broad but specific compound signature. TempO-Seq exhibits 99.6% specificity, single cell sensitivity, and excellent correlation with fold differences measured by RNA-Seq (R2 = 0.9) for 20,629 targets. Unlike many expression assays, TempO-Seq does not require RNA purification, cDNA synthesis, or capture of targeted RNA, and lacks a 3' end bias. To investigate the sensitivity of the TempO-Seq assay to identify significantly modulated compound-responsive genes, we derived whole transcriptome profiles from MCF-7 cells treated with the histone deacetylase inhibitor Trichostatin A (TSA) and identified more than 9,000 differentially expressed genes. The TSA profile for MCF-7 cells overlapped those for HL-60 and PC-3 cells in the Connectivity Map (cMAP) database, suggesting a common TSA-specific expression profile independent of baseline gene expression. A 43-gene cell-independent TSA signature was extracted from cMAP and confirmed in TempO-Seq MCF-7 data. Additional genes that were not previously reported to be TSA responsive in the cMAP database were also identified. TSA treatment of 5 cell types revealed 1,136 differentially expressed genes in common, including 785 genes not previously reported to be TSA responsive. We conclude that TSA induces a specific expression signature that is consistent across widely different cell types, that this signature contains genes not previously associated with TSA responses, and that TempO-Seq provides the sensitive differential expression detection needed to define such compound-specific, cell-independent, changes in expression.
Databáze: OpenAIRE