Critical Ising model and spanning trees partition functions

Autor: Béatrice de Tilière
Přispěvatelé: Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Statistics and Probability
dimension 2
82B20
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Mathematics::General Topology
FOS: Physical sciences
01 natural sciences
Combinatorics
dimers
010104 statistics & probability
Mathematics::Probability
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Mathematics::Category Theory
Mathematics::Metric Geometry
Critical Ising model
82B20
82B27
05A19

[MATH]Mathematics [math]
0101 mathematics
Mathematical Physics
Mathematics
Spanning tree
010102 general mathematics
Critical two-dimensional Ising model
Partition functions
Mathematical Physics (math-ph)
Statistical mechanics
Partition function (mathematics)
Graph
05A19
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Mathematics::Logic
Isoradial graphs
critical spanning trees
Ising model
Statistics
Probability and Uncertainty

82B27
Zdroj: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2016, 52 (3), pp.1382-1405
Ann. Inst. H. Poincaré Probab. Statist. 52, no. 3 (2016), 1382-1405
ISSN: 0246-0203
1778-7017
DOI: 10.1214/15-aihp680
Popis: We prove that the squared partition function of the two-dimensional critical Ising model defined on a finite, isoradial graph $G=(V,E)$, is equal to $2^{|V|}$ times the partition function of spanning trees of the graph $\bar{G}$, where $\bar{G}$ is the graph $G$ extended along the boundary; edges of $G$ are assigned Kenyon's [Ken02] critical weights, and boundary edges of $\bar{G}$ have specific weights. The proof is an explicit construction, providing a new relation on the level of configurations between two classical, critical models of statistical mechanics.
Comment: 38 pages, 26 figures
Databáze: OpenAIRE