Genome-scale mechanistic modeling of signaling pathways made easy: A bioconductor/cytoscape/web server framework for the analysis of omic data

Autor: Kinza Rian, Marta R. Hidalgo, Cankut Çubuk, Matias M. Falco, Joaquín Dopazo, Carlos Loucera, Maria Peña-Chilet, Inmaculada Alamo-Alvarez, Marina Esteban-Medina
Přispěvatelé: Ministerio de Economía y Competitividad (España), European Commission, [Rian,K, Çubuk,C, Falco,MM, Loucera,C, Esteban-Medina,M, Alamo-Alvarez,I, Peña-Chilet,M, Dopazo,J] Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Sevilla, Spain. [Rian,K] Laboratory of Innovative Technologies (LTI), National School of Applied Sciences in Tangier, UAE, Morocco. [Hidalgo,MR] Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain. [Falco,MM, Dopazo,J] Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain. [Loucera,C, Dopazo,J] Computational Systems Medicine. Institute of Biomedicine of Seville (IBiS), Sevilla, Spain. [Dopazo,J] Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain., This work is supported by grants SAF2017-88908-R from the Spanish Ministry of Economy and Competitiveness and PT17/0009/0006 and PI20/01305 from the ISCIII, both co-funded with European Regional Development Funds (ERDF) as well as H2020 Programme of the European Union grants Marie Curie Inno vative Training Network ‘‘Machine Learning Frontiers in Precision Medicine' (MLFPM) (GA 813533) and ‘‘ELIXIR-EXCELERATE fast track ELIXIR implementation and drive early user exploitation across the life sciences' (GA 676559) to JD. Funding for open access charge: from the Spanish Ministry of Economy and Competitive ness / SAF2017-88908-R
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Web server
Phenomena and Processes::Genetic Phenomena::Phenotype [Medical Subject Headings]
Phenomena and Processes::Genetic Phenomena::Genetic Variation::Mutation [Medical Subject Headings]
Computer science
Genomic data
Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression::Transcription
Genetic::Transcriptome [Medical Subject Headings]

Biophysics
Genome scale
Genomics
Computational biology
computer.software_genre
Biochemistry
Web tool
Bioconductor
03 medical and health sciences
0302 clinical medicine
Structural Biology
Genetics
Plug-in
030304 developmental biology
Sistema de señalización
0303 health sciences
Mutación
Mathematical modelling
Signaling pathway
Potential effect
Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Signal Transduction [Medical Subject Headings]
Method Article
Computer Science Applications
Causalidad
Causality
Transcriptomic
030220 oncology & carcinogenesis
Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Genetics::Genomics [Medical Subject Headings]
Phenomena and Processes::Genetic Phenomena::Genotype [Medical Subject Headings]
computer
Mutations
TP248.13-248.65
Biotechnology
Zdroj: Computational and Structural Biotechnology Journal, Vol 19, Iss, Pp 2968-2978 (2021)
Computational and Structural Biotechnology Journal
Digital.CSIC. Repositorio Institucional del CSIC
instname
r-FISABIO. Repositorio Institucional de Producción Científica
r-CIPF. Repositorio Institucional Producción Científica del Centro de Investigación Principe Felipe (CIPF)
Universitat Rovira i virgili (URV)
ISSN: 2001-0370
Popis: Genome-scale mechanistic models of pathways are gaining importance for genomic data interpretation because they provide a natural link between genotype measurements (transcriptomics or genomics data) and the phenotype of the cell (its functional behavior). Moreover, mechanistic models can be used to predict the potential effect of interventions, including drug inhibitions. Here, we present the implementation of a mechanistic model of cell signaling for the interpretation of transcriptomic data as an R/Bioconductor package, a Cytoscape plugin and a web tool with enhanced functionality which includes building interpretable predictors, estimation of the effect of perturbations and assessment of the effect of mutations in complex scenarios.
This work is supported by grants SAF2017-88908-R from the Spanish Ministry of Economy and Competitiveness and PT17/0009/0006 and PI20/01305 from the ISCIII, both co-funded with European Regional Development Funds (ERDF) as well as H2020 Programme of the European Union grants Marie Curie Innovative Training Network “Machine Learning Frontiers in Precision Medicine” (MLFPM) (GA 813533) and “ELIXIR-EXCELERATE fast-track ELIXIR implementation and drive early user exploitation across the life sciences” (GA 676559) to JD. Funding for open access charge: from the Spanish Ministry of Economy and Competitiveness / SAF2017-88908-R.
Databáze: OpenAIRE