Deciphering the global organization of clustering in real complex networks

Autor: M. Ángeles Serrano, Pol Colomer-de-Simón, Marián Boguñá, Mariano G. Beiró, J. Ignacio Alvarez-Hamelin
Přispěvatelé: Universitat de Barcelona
Rok vydání: 2013
Předmět:
FOS: Computer and information sciences
Physics - Physics and Society
Critical phenomena (Physics)
Theoretical computer science
Computer science
Property (programming)
Ciencias Físicas
Complex networks
FOS: Physical sciences
Physics and Society (physics.soc-ph)
Article
purl.org/becyt/ford/1 [https]
Set (abstract data type)
Exponential random graph models
Cluster Analysis
Computer Simulation
Cluster analysis
Física estadística
Computer networks
Social and Information Networks (cs.SI)
Models
Statistical

Multidisciplinary
Spectrum (functional analysis)
Computer Science - Social and Information Networks
Nonlinear phenomena
purl.org/becyt/ford/1.3 [https]
Disordered Systems and Neural Networks (cond-mat.dis-nn)
Condensed Matter - Disordered Systems and Neural Networks
Complex network
Degree distribution
Graph
Phase transitions and critical phenomena
Xarxes d'ordinadors
Fenòmens crítics (Física)
Statistical physics
CIENCIAS NATURALES Y EXACTAS
Física de los Materiales Condensados
Zdroj: Dipòsit Digital de la UB
Universidad de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Scientific Reports
DOI: 10.48550/arxiv.1306.0112
Popis: We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles. Fil: Colomer de Simón, Pol. Universidad de Barcelona; España Fil: Serrano, María de Los Angeles. Universidad de Barcelona; España Fil: Beiro, Mariano Gastón. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Alvarez Hamelin, Jose Ignacio. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Boguñá, Marián. Universidad de Barcelona; España
Databáze: OpenAIRE