Alpha-cadinol as a potential ACE-inhibitory volatile compound identified from Phaseolus vulgaris L. through in vitro and in silico analysis
Autor: | Jyoti Tripathi, Sumit Gupta, Satyendra Gautam |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Biomolecular Structure and Dynamics. 41:3847-3861 |
ISSN: | 1538-0254 0739-1102 |
Popis: | Hypertension is a major risk factor of cardiovascular diseases, which is mainly caused due to over activation of renin-angiotensin system. The angiotensin converting enzyme (ACE), which is involved in formation of angiotensin II from angiotensin I, causes the blood vessels to constrict, in turn leading to hypertension. The current study was initiated to understand the role of bioactive volatile compounds from Phaseolus vulgaris L. (common bean), in ACE enzyme inhibition. Beans aqueous extract (BAE) showed maximum ACE inhibition of 88.4 ± 0.8% in comparison to other commonly consumed vegetables like spinach and garlic. The head space gas chromatography-mass spectrometry analysis showed the presence of a number of terpenes and terpenoids, which were present prominently in BAE. In silico molecular docking studies indicated that among the other volatile compounds, alpha-cadinol (-7.27 kcal/mol) and ar-tumerone (-6.44 kcal/mol) have the maximum binding affinity with the active site of ACE, as compared to that of captopril (-6.41 kcal/mol). The molecular dynamic simulation in biological environment, showed that alpha-cadinol forms a stable complex with ACE, with average binding energy of -42 kJ/mol. The ACE:alpha-cadinol complex was found to be stable mainly due to the hydrophobic interactions of alpha-cadinol with active site residues (Tyr523 and Phe457) of ACE. The in silico drug-likeness analysis showed that alpha-cadinol is appropriate for human system with no predicted hepatotoxicity or mutagenicity (AMES toxicity). Communicated by Ramaswamy H. Sarma. |
Databáze: | OpenAIRE |
Externí odkaz: |