OS NÚMEROS DE STIEFEL-WHITNEY E DE PONTRJAGIN E A DETERMINAÇÃO DAS CLASSES DE COBORDISMO ORIENTADO

Autor: Hermano de Souza Ribeiro
Přispěvatelé: Gilberto Francisco Loibel, Luiz Antonio Favaro, Paul Qualifik, Mario Rameh Saab
Rok vydání: 2022
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/d.55.1976.tde-07072022-143658
Popis: Não disponível The object of this work is to prove the following result: \"Two oriented manifolds are cobordant if and only if all their Pontrjagin and Stiefel-Whitney numbers agree\". This was conjectured by R. Thom and proved by C.T.C. Wall. Some consequences of this result are proved too. The following theoren of J. Milnor is showed: \"Suppose that M is a n-dimensional oriented manifold. If M can be imbedded in euclidean space so as to have trivial normal bundle or if H* (M:Z2) is isomorphic to H*(Sn:Z2) then M is a boundary.
Databáze: OpenAIRE