OS NÚMEROS DE STIEFEL-WHITNEY E DE PONTRJAGIN E A DETERMINAÇÃO DAS CLASSES DE COBORDISMO ORIENTADO
Autor: | Hermano de Souza Ribeiro |
---|---|
Přispěvatelé: | Gilberto Francisco Loibel, Luiz Antonio Favaro, Paul Qualifik, Mario Rameh Saab |
Rok vydání: | 2022 |
Zdroj: | Biblioteca Digital de Teses e Dissertações da USP Universidade de São Paulo (USP) instacron:USP |
DOI: | 10.11606/d.55.1976.tde-07072022-143658 |
Popis: | Não disponível The object of this work is to prove the following result: \"Two oriented manifolds are cobordant if and only if all their Pontrjagin and Stiefel-Whitney numbers agree\". This was conjectured by R. Thom and proved by C.T.C. Wall. Some consequences of this result are proved too. The following theoren of J. Milnor is showed: \"Suppose that M is a n-dimensional oriented manifold. If M can be imbedded in euclidean space so as to have trivial normal bundle or if H* (M:Z2) is isomorphic to H*(Sn:Z2) then M is a boundary. |
Databáze: | OpenAIRE |
Externí odkaz: |