Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea
Autor: | Christian M. Lange, Jens Twellmeyer, Mathias Hammelmann, Alexander Zaigler, Günter Raddatz, Jörg Soppa, Dieter Oesterhelt, Stephan C. Schuster |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
Halobacterium salinarum
lcsh:QH426-470 Transcription Genetic lcsh:Biotechnology Biology Genes Archaeal Evolution Molecular chemistry.chemical_compound Species Specificity Ribosomal protein Genome Archaeal lcsh:TP248.13-248.65 RNA polymerase Translational regulation Transcriptional regulation Genetics Haloferax RNA Messenger Gene Oligonucleotide Array Sequence Analysis Regulation of gene expression Models Genetic Reverse Transcriptase Polymerase Chain Reaction Haloferax volcanii Reproducibility of Results biology.organism_classification Repressor Proteins lcsh:Genetics chemistry Protein Biosynthesis Gene Expression Regulation Archaeal Biotechnology Research Article |
Zdroj: | BMC Genomics BMC Genomics, Vol 8, Iss 1, p 415 (2007) |
ISSN: | 1471-2164 |
Popis: | Background Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. Results A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. Conclusion For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved. For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed. |
Databáze: | OpenAIRE |
Externí odkaz: |