Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework for Sequence Processing

Autor: Frédéric Alexandre, Nicolas Rougier, Hervé Frezza-Buet
Přispěvatelé: Neuromimetic intelligence (CORTEX), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), none, Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2000
Předmět:
Zdroj: Neural, Symbolic and Reinforcement Methods for Sequence Learning
Neural, Symbolic and Reinforcement Methods for Sequence Learning, Springer, 28 p, 2000
Sequence Learning ISBN: 9783540415978
Sequence Learning
HAL
Popis: Contribution à un ouvrage.; Whereas classical connectionist models can hardly cope with difficult dynamic tasks with a strong temporal factor, many temporal mechanisms inspired with neurobiological data has been proposed in the past and yield efficient time processing properties. The goal of this chapter is to show that, beyond these isolated mechanisms, their integration in a more general architectural and functional framework can potentiate their power and make them usable for non trivial behavioral tasks. We propose a cerebral framework, from the neuronal to the behavioral level, and give some applicative illustrations that underline the encouraging results obtained today.
Databáze: OpenAIRE