Intermittency in the velocity distribution of heavy particles in turbulence

Autor: Massimo Cencini, Federico Toschi, Alessandra S. Lanotte, Luca Biferale, Jérémie Bec
Přispěvatelé: Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Fluids and Flows, Scientific Computing, Computational Multiscale Transport Phenomena (Toschi)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2010, 646, pp.527
Journal of fluid mechanics
646 (2010): 527–536. doi:10.1017/S0022112010000029
info:cnr-pdr/source/autori:J. Bec (1); L. Biferale (2); M. Cencini (3); A.S. Lanotte (4); F. Toschi (5,6)/titolo:Intermittency in the velocity distribution of heavy particles in turbulence/doi:10.1017%2FS0022112010000029/rivista:Journal of fluid mechanics (Print)/anno:2010/pagina_da:527/pagina_a:536/intervallo_pagine:527–536/volume:646
Journal of Fluid Mechanics, 646, 527-536. Cambridge University Press
ISSN: 0022-1120
1469-7645
DOI: 10.1017/S0022112010000029
Popis: The statistics of velocity differences between pairs of heavy inertial point particles suspended in an incompressible turbulent flow is studied and found to be extremely intermittent. The problem is particularly relevant to the estimation of the efficiency of collisions among heavy particles in turbulence. We found that when particles are separated by distances within the dissipative subrange, the competition between regions with quiet regular velocity distributions and regions where very close particles have very different velocities (caustics) leads to a quasi bi-fractal behaviour of the particle velocity structure functions. Contrastingly, we show that for particles separated by inertial-range distances, the velocity-difference statistics can be characterized in terms of a local roughness exponent, which is a function of the scale-dependent particle Stokes number only. Results are obtained from high-resolution direct numerical simulations up to 20483 collocation points and with millions of particles for each Stokes number.
Databáze: OpenAIRE