What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)

Autor: Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, Juliane L. Fry
Jazyk: angličtina
Rok vydání: 2023
Zdroj: eISSN
Popis: Aerosol formation acts as a sink for gas-phase atmospheric species that controls their atmospheric lifetime and environmental effects. To investigate aerosol formation and evolution in the Netherlands, a hybrid positive matrix factorization (PMF) analysis has been conducted using observations from May, June, and September 2021 collected in a rural site of Cabauw in Central Netherlands. The hybrid input matrix consists of the full organic mass spectrum acquired from a time-of-flight aerosol chemical speciation monitor (ToF-ACSM), ACSM species concentrations, and binned particle size distribution concentrations from a scanning mobility particle sizer (SMPS). These hybrid PMF analyses discerned six factors that describe aerosol composition variations: four size-driven factors that are related to new particle formation and growth (F6, F5, F4, and F3), and two bulk factors driven by composition, not size (F2, F1). The smallest-diameter size factor (F6) contains ammonium sulfate and organics, and typically occurs during the daytime. Newly formed particles, represented by F6, are correlated with wind from the southwesterly-westerly, northerly, and easterly sectors that transport sulfur oxides (SOx), ammonia (NH3), and organic precursors to Cabauw. As the particles grow from F6 to F3, nitrate plays an increasing role, and the particle loading diurnal cycle shifts from daytime to a nighttime maximum. The inorganic ion balance and organics composition in the bulk atmosphere affects the chemical composition variation across factors and seasons. Changing ammonium-sulfate-nitrate equilibrium shifts inorganic species among factors, and greater organics availability makes secondary organic aerosol (SOA) more influential in summertime aerosol growth, principally due to volatility differences produced by seasonal variation in photooxidation and temperature.
Databáze: OpenAIRE