Quasilocal mass in scalar-tensor gravity: spherical symmetry
Autor: | Andrea Giusti, Valerio Faraoni |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Gravity (chemistry) 83C40 83C57 83D05 83F05 Physics and Astronomy (miscellaneous) 010308 nuclear & particles physics Generalization Scalar (mathematics) FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) Mathematical Physics (math-ph) Gauge (firearms) 01 natural sciences General Relativity and Quantum Cosmology Black hole High Energy Physics::Theory 0103 physical sciences Circular symmetry Tensor 010306 general physics Mathematical Physics Mathematical physics |
DOI: | 10.48550/arxiv.2005.04770 |
Popis: | A recent generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is adapted to general spherically symmetric geometries. It is then applied to several black hole and other spherical solutions of scalar-tensor and $f({\cal R}) $ gravity. The relations of this quasilocal energy with the Abreu-Nielsen-Visser gauge and the Kodama vector are discussed. Comment: 11 pages, no figures, to appear in Class.Quant.Grav |
Databáze: | OpenAIRE |
Externí odkaz: |