Effective combination of microgravimetry and geoelectrical methods in the detection of subsurface cavities in archaeological prospection – selected case-studies from Slovakia
Autor: | Lenka Ondrášová, Ivan Zvara, Juraj Papčo, David Kušnirák, Dennis Wilken, Dominika Godová, René Putiška, Roman Pašteka, Ema Nogová |
---|---|
Rok vydání: | 2019 |
Předmět: |
lcsh:QB275-343
010504 meteorology & atmospheric sciences lcsh:Geodesy lcsh:QC801-809 archaeogeophysics non-destructive prospecting methods detection interpretation Geophysics 01 natural sciences lcsh:Geophysics. Cosmic physics symbols.namesake Gravitational field Archaeological prospection Ground-penetrating radar Euler's formula symbols Stage (hydrology) Gravimetry Tomography Geology 0105 earth and related environmental sciences Electric resistivity |
Zdroj: | Contributions to Geophysics and Geodesy, Vol 49, Iss 4, Pp 479-496 (2019) |
ISSN: | 1338-0540 |
Popis: | This contribution is focused on a common utilization of microgravimetry (very precise and detailed gravimetry) and geoeletrical methods (ground penetrating radar and electric resistivity tomography) in the detection of subsurface cavities in non-destructive archaeological prospection. Both methods can separately detect such kind of subsurface objects, but their complementary and at the same time an eliminating aspect can be very helpful in the interpretation of archaeogeophysical datasets. These properties were shown in various published case-studies. Here we present some more typical examples. Beside this, we present here for a first time an application of the electric resistivity tomography in the interior of a building (a church) in Slovakia. We also demonstrate an example with an extremely small acquisition step in microgravity as a trial for the detection of cavities with very small dimensions – in this case small separated spaces for coffins as a part of the detected crypt (so called columbarium). Unfortunately, these cavities were too small to be reliably detected by the microgravity method. We have tried the well-known 3D Euler deconvolution method to obtain usable depth estimates from the acquired anomalous gravity field. Results from this method were in the majority of cases plausible (sometimes little bit too shallow), when compared with the results from the ground penetrating radar. In one selected example, the 3D Euler solutions were too deep and in the present stage of study we cannot well explain this situation. In general, all presented results support an important role of common combination of several geophysical methods, when searching for subsurface cavities in non-destructive archaeological prospection. |
Databáze: | OpenAIRE |
Externí odkaz: |