Templating Sol–Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies

Autor: Xavier A. Jeanbourquin, Yang Li, Kevin Sivula, Xiaoli Zhang, Yongdan Li, Hong Chen, Mathieu S. Prévot, Néstor Guijarro
Přispěvatelé: IRCELYON-Catalyse Hétérogène pour la Transition Energétique (CATREN), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Rok vydání: 2015
Předmět:
Zdroj: ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2015, 7 (31), pp.16999-17007. ⟨10.1021/acsami.5b02111⟩
ISSN: 1944-8252
1944-8244
DOI: 10.1021/acsami.5b02111
Popis: Nanostructuring hematite films is a critical step for enhancing photoelectrochemical performance by circumventing the intrinsic limitations on minority carrier transport. Herein, we present a novel sol-gel approach that affords nanostructured hematite films by including CuO as sacrificial templating agent. First, by annealing in air at 450 degrees C a film comprising an intimate mixture of CuO and Fe2O3 nanopartides is obtained. The subsequent treatment with NaCl and annealing at 700 degrees C under Argon reveals a nanostructured highly crystalline hematite film devoid of copper. Photoelectrochemical investigations reveal that the incorporation of CuO as templating agent and the inert conditions employed during the annealing play a crucial role in the performance of the hematite electrodes. Mott-Schottky analysis shows a higher donor concentration when annealing in inert conditions, and even higher when combined with the NaCl treatment. These findings agree well with the presence of an oxygen-deficient shell on the material's surface evidenced by FT-IR and XPS measurements. Likewise, the incorporation of the CuO enhances the photocurrent obtained at 1.23 V from 0.55 to 0.8 mA.cm(-2) because of an improved nanostructure. Optimized films demonstrate an incident photon-to-current efficiency (IPCE) of 52% at 380 nm when applying 1.23 V versus RHE, and a faradaic efficiency for water splitting close to unity.
Databáze: OpenAIRE