Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity
Autor: | Michael Cynamon, Dionysia Dimitrakopoulou, Jacques Robert, Matthieu Paiola, Carolyn M. Shoen, Arianna Lopez, Martin S. Pavelka |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
mycobacteria T cell Xenopus 030106 microbiology Mycobacterium abscessus Catalysis dissemination Microbiology larval stage lcsh:Chemistry Inorganic Chemistry Pathogenesis 03 medical and health sciences In vivo medicine Physical and Theoretical Chemistry lcsh:QH301-705.5 Molecular Biology Zebrafish morphotype Spectroscopy biology microbial persistence Organic Chemistry aquatic vertebrates non-mammalian model General Medicine biology.organism_classification Computer Science Applications Chronic infection 030104 developmental biology medicine.anatomical_structure lcsh:Biology (General) lcsh:QD1-999 Mycobacterium |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 2 International Journal of Molecular Sciences, Vol 22, Iss 806, p 806 (2021) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms22020806 |
Popis: | Mycobacterium abscessus (Mab) is an emerging, nontuberculosis mycobacterium (NTM) that infects humans. Mab has two morphotypes, smooth (S) and rough (R), related to the production of glycopeptidolipid (GPL), that differ in pathogenesis. To further understand the pathogenicity of these morphotypes in vivo, the amphibian Xenopus laevis was used as an alternative animal model. Mab infections have been previously modeled in zebrafish embryos and mice, but Mab are cleared early from immunocompetent mice, preventing the study of chronic infection, and the zebrafish model cannot be used to model a pulmonary infection and T cell involvement. Here, we show that X. laevis tadpoles, which have lungs and T cells, can be used as a complementary model for persistent Mab infection and pathogenesis. Intraperitoneal (IP) inoculation of S and R Mab morphotypes disseminated to tadpole tissues including liver and lungs, persisting for up to 40 days without significant mortality. Furthermore, the R morphotype was more persistent, maintaining a higher bacterial load at 40 days postinoculation. In contrast, the intracardiac (IC) inoculation with S Mab induced significantly greater mortality than inoculation with the R Mab form. These data suggest that X. laevis tadpoles can serve as a useful comparative experimental organism to investigate pathogenesis and host resistance to M. abscessus. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |