Beyond factor analysis: Multidimensionality and the Parkinson's Disease Sleep Scale-Revised
Autor: | Maria Pushpanathan, Romola S. Bucks, Natalie Gasson, Caitlin Timms, Meghan G. Thomas, Andrea M. Loftus, Michelle Olaithe |
---|---|
Rok vydání: | 2017 |
Předmět: |
Male
Parkinson's disease Pulmonology Physiology Apnea lcsh:Medicine 0302 clinical medicine Mathematical and Statistical Techniques Insomnia Medicine and Health Sciences 030212 general & internal medicine Longitudinal Studies lcsh:Science Aged 80 and over Sleep disorder Principal Component Analysis Multidisciplinary Movement Disorders Depression Sleep apnea Cognition Parkinson Disease Neurodegenerative Diseases Middle Aged Confirmatory factor analysis Neurology Physical Sciences Disease Progression Female medicine.symptom Psychology Factor Analysis Statistics (Mathematics) Clinical psychology Research Article Adult Sleep Wake Disorders Sleep Apnea Research and Analysis Methods 03 medical and health sciences Mental Health and Psychiatry medicine Humans Statistical Methods Aged Mood Disorders lcsh:R Biology and Life Sciences medicine.disease Dyssomnias Mood Multivariate Analysis lcsh:Q Factor Analysis Statistical Sleep Physiological Processes Sleep Disorders 030217 neurology & neurosurgery Mathematics |
Zdroj: | PLoS ONE PLoS ONE, Vol 13, Iss 2, p e0192394 (2018) |
ISSN: | 1932-6203 |
Popis: | Many studies have sought to describe the relationship between sleep disturbance and cognition in Parkinson's disease (PD). The Parkinson's Disease Sleep Scale (PDSS) and its variants (the Parkinson's disease Sleep Scale-Revised; PDSS-R, and the Parkinson's Disease Sleep Scale-2; PDSS-2) quantify a range of symptoms impacting sleep in only 15 items. However, data from these scales may be problematic as included items have considerable conceptual breadth, and there may be overlap in the constructs assessed. Multidimensional measurement models, accounting for the tendency for items to measure multiple constructs, may be useful more accurately to model variance than traditional confirmatory factor analysis. In the present study, we tested the hypothesis that a multidimensional model (a bifactor model) is more appropriate than traditional factor analysis for data generated by these types of scales, using data collected using the PDSS-R as an exemplar. 166 participants diagnosed with idiopathic PD participated in this study. Using PDSS-R data, we compared three models: a unidimensional model; a 3-factor model consisting of sub-factors measuring insomnia, motor symptoms and obstructive sleep apnoea (OSA) and REM sleep behaviour disorder (RBD) symptoms; and, a confirmatory bifactor model with both a general factor and the same three sub-factors. Only the confirmatory bifactor model achieved satisfactory model fit, suggesting that PDSS-R data are multidimensional. There were differential associations between factor scores and patient characteristics, suggesting that some PDSS-R items, but not others, are influenced by mood and personality in addition to sleep symptoms. Multidimensional measurement models may also be a helpful tool in the PDSS and the PDSS-2 scales and may improve the sensitivity of these instruments. |
Databáze: | OpenAIRE |
Externí odkaz: |