Kramers Equation and Supersymmetry

Autor: Sorin Tanase-Nicola, Julien Tailleur, Jorge Kurchan
Přispěvatelé: Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Rok vydání: 2006
Předmět:
Zdroj: Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2006, 122 (4), pp.557--595
ISSN: 1572-9613
0022-4715
DOI: 10.1007/s10955-005-8059-x
Popis: Hamilton's equations with noise and friction possess a hidden supersymmetry, valid for time-independent as well as periodically time-dependent systems. It is used to derive topological properties of critical points and periodic trajectories in an elementary way. From a more practical point of view, the formalism provides new tools to study the reaction paths in systems with separated time scales. A 'reduced current' which contains the relevant part of the phase space probability current is introduced, together with strategies for its computation.
Comment: 39 pages, 5 figures
Databáze: OpenAIRE