Kramers Equation and Supersymmetry
Autor: | Sorin Tanase-Nicola, Julien Tailleur, Jorge Kurchan |
---|---|
Přispěvatelé: | Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP) |
Rok vydání: | 2006 |
Předmět: |
High Energy Physics - Theory
Physics Statistical Mechanics (cond-mat.stat-mech) Kramers equation Computation Probability current FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) Supersymmetry Nonlinear Sciences - Chaotic Dynamics 01 natural sciences 010305 fluids & plasmas Formalism (philosophy of mathematics) Theoretical physics High Energy Physics - Theory (hep-th) Phase space 0103 physical sciences A-2006-08 [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] Chaotic Dynamics (nlin.CD) 010306 general physics Condensed Matter - Statistical Mechanics Mathematical Physics |
Zdroj: | Journal of Statistical Physics Journal of Statistical Physics, Springer Verlag, 2006, 122 (4), pp.557--595 |
ISSN: | 1572-9613 0022-4715 |
DOI: | 10.1007/s10955-005-8059-x |
Popis: | Hamilton's equations with noise and friction possess a hidden supersymmetry, valid for time-independent as well as periodically time-dependent systems. It is used to derive topological properties of critical points and periodic trajectories in an elementary way. From a more practical point of view, the formalism provides new tools to study the reaction paths in systems with separated time scales. A 'reduced current' which contains the relevant part of the phase space probability current is introduced, together with strategies for its computation. Comment: 39 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |