Constructing the Banaschewski compactification through the functionally countable subalgebra of $C(X)$

Autor: Mehdi Parsinia
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Categories and General Algebraic Structures with Applications, Vol 14, Iss 1, Pp 167-180 (2021)
ISSN: 2345-5861
2345-5853
Popis: Let $X$ be a zero-dimensional space and $C_c(X)$ denote the functionally countable subalgebra of $C(X)$. It is well known that $\beta_0X$ (the Banaschewski compactfication of $X$) is a quotient space of $\beta X$. In this article, we investigate a construction of $\beta_0X$ via $\beta X$ by using $C_c(X)$ which determines the quotient space of $\beta X$ homeomorphic to $\beta_0X$. Moreover, the construction of $\upsilon_0X$ via $\upsilon_{_{C_c}}X$ (the subspace $\{p\in \beta X: \forall f\in C_c(X), f^*(p)
Databáze: OpenAIRE