A Signature of 14 Long Non-Coding RNAs (lncRNAs) as a Step towards Precision Diagnosis for NSCLC

Autor: Anetta Sulewska, Jacek Niklinski, Radoslaw Charkiewicz, Piotr Karabowicz, Przemyslaw Biecek, Hubert Baniecki, Oksana Kowalczuk, Miroslaw Kozlowski, Patrycja Modzelewska, Piotr Majewski, Elzbieta Tryniszewska, Joanna Reszec, Zofia Dzieciol-Anikiej, Cezary Piwkowski, Robert Gryczka, Rodryg Ramlau
Rok vydání: 2022
Předmět:
Zdroj: Cancers, Vol 14, Iss 439, p 439 (2022)
Cancers; Volume 14; Issue 2; Pages: 439
Cancers
ISSN: 2072-6694
Popis: Simple Summary Although the biological function of lncRNAs has not been fully elucidated, we know that the aberrant expression of lncRNAs can drive the cancer phenotype. Therefore, a growing area of research is focusing on lncRNAs as putative diagnostic biomarkers and therapeutic targets. The aim of the study was the appraisal of the diagnostic value of 14 differentially expressed lncRNA in the early stages of NSCLC. We established two classifiers. The first recognized cancerous from noncancerous tissues, the second successfully discriminated NSCLC subtypes (LUAD vs. LUSC). Our results indicate that the panel of 14 lncRNAs can be a promising tool to support a routine histopathological diagnosis of NSCLC. Abstract LncRNAs have arisen as new players in the world of non-coding RNA. Disrupted expression of these molecules can be tightly linked to the onset, promotion and progression of cancer. The present study estimated the usefulness of 14 lncRNAs (HAGLR, ADAMTS9-AS2, LINC00261, MCM3AP-AS1, TP53TG1, C14orf132, LINC00968, LINC00312, TP73-AS1, LOC344887, LINC00673, SOX2-OT, AFAP1-AS1, LOC730101) for early detection of non-small-cell lung cancer (NSCLC). The total RNA was isolated from paired fresh-frozen cancerous and noncancerous lung tissue from 92 NSCLC patients diagnosed with either adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC). The expression level of lncRNAs was evaluated by a quantitative real-time PCR (qPCR). Based on Ct and delta Ct values, logistic regression and gradient boosting decision tree classifiers were built. The latter is a novel, advanced machine learning algorithm with great potential in medical science. The established predictive models showed that a set of 14 lncRNAs accurately discriminates cancerous from noncancerous lung tissues (AUC value of 0.98 ± 0.01) and NSCLC subtypes (AUC value of 0.84 ± 0.09), although the expression of a few molecules was statistically insignificant (SOX2-OT, AFAP1-AS1 and LOC730101 for tumor vs. normal tissue; and TP53TG1, C14orf132, LINC00968 and LOC730101 for LUAD vs. LUSC). However for subtypes discrimination, the simplified logistic regression model based on the four variables (delta Ct AFAP1-AS1, Ct SOX2-OT, Ct LINC00261, and delta Ct LINC00673) had even stronger diagnostic potential than the original one (AUC value of 0.88 ± 0.07). Our results demonstrate that the 14 lncRNA signature can be an auxiliary tool to endorse and complement the histological diagnosis of non-small-cell lung cancer.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje