A VARIATIONAL APPROACH TO THE YAU-TIAN-DONALDSON CONJECTURE

Autor: Berman, Robert, Boucksom, S��bastien, Jonsson, Mattias
Přispěvatelé: Department of Mathematical Sciences (Chalmers), Chalmers University of Technology [Göteborg], Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Department of Mathematics, University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Boucksom, Sebastien
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: We give a variational proof of a version of the Yau-Tian-Donaldson conjecture for twisted K\"ahler-Einstein currents, and use this to express the greatest (twisted) Ricci lower bound in terms of a purely algebro-geometric stability threshold. Our approach does not involve the continuity method or Cheeger-Colding-Tian theory, and uses instead pluripotential theory and valuations. Along the way, we study the relationship between geodesic rays and non-Archimedean metrics.
Comment: Added Appendix B on a valuative analysis of singularities of plurisubharmonic functions. Various other small changes and improvements. To appear in Journal of the AMS
Databáze: OpenAIRE